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1 Introduction

One of the most important classes of quantities calculated in quantum field theory is that

of the on-shell scattering amplitudes. In fact, the knowledge of the scattering matrix

completely specifies the theory, perturbatively. Moreover, scattering amplitudes of gauge

theories frequently exhibit structures and symmetries which are not at all apparent from

the Lagrangian formulation of the system.

One such example is the maximally helicity violating (MHV) tree level amplitudes

of an arbitrary number of gluons [1]. Another example is the iterative structure of the

multi-loop MHV scattering amplitudes in the planar maximally super-symmetric Yang-

Mills theory (N = 4 SYM). Such a structure was first observed in [2] for the case of the

four gluon planar amplitude at two loops. In the same parer, it was conjectured that this

iterative structure may also hold for an arbitrary number of gluons.

Subsequently, an explicit calculation of the four gluon amplitude at three loops led

the authors of [4] to propose a conjecture for the all-loop expression of the n-point MHV

amplitude. From the work of [3] , it is known that the soft and collinear singularities

of any gauge theory amplitude exponentiate. What is remarkable about the conjecture

of [4] is that also the finite part of the amplitude, properly defined, does exponentiate.

Since the conjecture of [4] is an all-loop one, it should also be valid in the strong coupling

regime, λ = g2N ≫> 1, and can thus be tested by using the AdS/CFT correspondence [5].

However, the objects which naturally occur in a conformal field theory are gauge invariant

operators and their correlation functions and not the scattering amplitudes.

In a remarkable paper, the authors of [6] gave a prescription of how to calculate

scattering amplitudes in the context of AdS/CFT. In particular, in order to simplify the

boundary conditions of the problem, they performed a T-duality in four of the directions

of the AdS space. As a result, it became evident that the calculation of the scattering

amplitude is equivalent to the vacuum expectation value of polygonal Wilson loop whose
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contour is comprised of light-like segments, each segment corresponding to the momentum

of a scattered gluon. Using this approach, they succeeded in finding the minimal surface

for the case of a loop with four segments which corresponds to the logarithm of the four

gluon amplitude at strong coupling. The expression they obtained is in agreement with the

conjecture put forward in [4] , when one takes into account the value of the cusp anomalous

dimension at strong coupling.

The aforementioned equivalence of the amplitude and the expectation value of the

Wilson loop, although justified only at strong coupling, suggests that the same duality

may hold at weak coupling too, order by order in perturbation theory. That this is true

at the one loop level was confirmed in [16] for the four gluon amplitude and in [30] for the

n-gluon amplitude. Subsequently, the authors of [17] were able to confirm this conjecture

by computing the expectation value of the Wilson loops with four and five legs at two loops.

In the meanwhile, some doubt was cast on the validity of the BDS conjecture beyond

one loop and for amplitudes with six gluons or more [7, 34]. On the Wilson loop side,

an important development was the derivation of the anomalous conformal Ward identities

which the Wilson loop obeys [18]. By exploiting these identities it became apparent that

the BDS conjecture is correct and agrees with the Wilson loop picture for four and five par-

ticles. However, for amplitudes with more than five gluons, one can construct conformally

invariant cross ratios. As a consequence, one can add any function of these cross ratios to

the BDS ansatz and still have the conformal Ward identities satisfied. This function which

encodes the deviation from the BDS conjecture is termed as the finite remainder R. The

authors of [19] calculated the remainder of the two loop six-edged Wilson loop numerically,

and found that it is different from zero. In a parallel development, the corresponding two

loop six gluon MHV amplitude was calculated and it was directly verified that the BDS

ansatz has to be modified [10]. The comparison of these results [10, 20] shows that the

parity even finite part of the MHV amplitude and the Wilson loop are in agreement (up

to a constant) for six particles at two loops.

As was, briefly, discussed above the Wilson loops obey conformal Ward identities which

constrain to a great extent their expectation values. The conformal symmetry related to

these Ward identities is not the conformal symmetry of the original space where the gluons

live and scatter. It is a symmetry of a dual space where the Wilson loops live, and at

strong coupling this space is the boundary of the AdS space obtained after the T-dualities

are performed. The nature of this symmetry, as well as its connection to integrability

were clarified in [24, 25]. The Wilson loop/amplitude duality suggests that the tree level

scattering matrix of the N = 4 theory could possess a dual supersymmetrised version of

the dual conformal theory. This was proved and further studied in [21–23, 26, 31].

In this paper we study the relation between null Wilson loops with a self-crossing

and their corresponding amplitudes.1 One important aspect of our analysis is that the

kinematics of self-intersecting Wilson loops are in the Minkowskian region. Firstly, we

compute the one loop contribution to the expectation value of a self-intersecting loop. This

1Other studies of the amplitude in particular kinematic limits (multi-Regge kinematics) include [35, 36,

38, 39].
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computation shows that the Wilson loop develops an additional 1/ǫ pole associated to the

intersection. The Wilson loop/amplitude conjecture indicates that the same 1/ǫ singularity

should appear at the corresponding amplitude. We verify this by examining the finite part

of the one-loop amplitude at the corresponding kinematic limit. Furthermore, we focus on

the behaviour of the finite remainder function R.2 By exploiting the renormalisation group

equations which govern the dependence of the Wilson loops on the renormalisation scale

µ we argue that the remainder function R(u1, u2, u3) explodes in the imaginary direction

when approaching the self-intersecting Wilson loop. This is similar to what happens at one

loop, where the finite part of the amplitude also diverges, and suggests that R has a branch

cut in the negative u2 axis when the other two ratios are approximately equal u1 ≈ u3.

The rest of the paper is organised as follows. In section 2, we discuss the kinematics

of a Wilson loop with a self crossing. In section 3, we compute the one loop contribution

of the crossing to the expectation value of a self-intersecting Wilson loop and compare

with the the corresponding one loop amplitude. In section 4, we derive the renormalisation

group equations relevant for the self-intersecting null Wilson loop and its implications for

the remainder function R. Finally, in section 5 we comment on the results of the two

previous sections.

2 Kinematics of the self crossing Wilson loop

As a first step, we derive some useful relations for the kinematic configuration of a self-

intersecting Wilson loop (see figure 1). By translational invariance one can choose the

intersection point to be at zero. We also denote the momenta of the intersecting gluons

by p = p4 and q = p1. x and y are the fractions of p and q from zero to x5 and x1

respectively. P is the sum of the momenta from the tip of q to the beginning of p while Q

is the corresponding sum from the tip of p to the beginning of q.

P 2 = x2
15 Q2 = x2

24 (2.1)

Momentum conservation for the upper half of the loop gives:

xp + yq + P = 0. (2.2)

Similarly, for the lower half of the loop it gives:

(1 − x)p + (1 − y)q + Q = 0. (2.3)

By dotting (2.2) with p we get:

y = −
P · p

p · q
, (2.4)

while by dotting (2.2) with q we get:

x = −
P · q

p · q
. (2.5)

2Recently, the strong coupling behaviour of R for the case of regular polygons was studied in [8].
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Similarly from (2.3) it is easy to obtain:

1 − y = −
Q · p

p · q
(2.6)

and

1 − x = −
Q · q

p · q
. (2.7)

Furthermore, (2.2) and (2.3) can be solved with respect to P and Q and squared to give:

P 2 = 2xyp · q, (2.8)

Q2 = 2(1 − x)(1 − y)p · q. (2.9)

Finally, with the help of (2.8),(2.4) and (2.9),(2.6) we get:

s
.
= (P + p)2 = −2y(1 − x)p · q (2.10)

and

t
.
= (P + q)2 = (Q + p)2 = −2x(1 − y)p · q (2.11)

respectively. By using the equations listed above it is straightforward to verify that:

P 2Q2 = st = 4xy(1 − x)(1 − y)p · q. (2.12)

This is one of the key relations of this section. In what follows we will also need the relation:

P 2 + Q2 − s − t = 2p · q. (2.13)

Before going on, let us elaborate on the kinematics of the loop appearing in figure 1.

The first thing one can observe is that the value of the loop depends on six independent

Lorentz invariant variables. One way to see this is as follows: The two momentum conser-

vation relations (1−x)p+(1−y)q+p2+p3 = 0 and xp+yq+p5+p6 = 0 allow us to express

two of the momenta, say p5 and p3 in terms of p, q, p2, p6 and x, y. Thus, we are left with

four independent momenta plus the pair (x, y). From the four independent momenta one

can build six Lorentz invariant combinations pi · pj, i, j = 1, 2, 4, 6. However, one should

remember to impose the conditions that p5 and p3 are massless. These conditions p2
5 = 0

and p2
3 = 0 supply two relations between the six Lorentz invariant combinations mentioned

above. As a consequence, one has 4 Lorentz invariants plus x, y which makes six invariants

in total.

In what follows, we express the nine variables appearing in a six-edged Wilson loop in

terms of six quantities:

x2
15 =

xy

(1 − x)(1 − y)
s2 x2

24 = s2 x2
14 = −

ys2

1 − y
x2

25 = −
xs2

1 − x

x2
13 =

t2
1 − y

x2
26 =

t1
y

x2
35 =

t2
1 − x

x2
46 =

t1
x

x2
36 =

t2
1 − y

+
t1
y

+ 2p2 · p6, (2.14)
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Figure 1. Wilson loop configurations which mix under renormalisation. Diagram 1a depicts the

contour C of the Wilson loop W1 = 1

N
TrP exp

[

ig
∮

C
dτ
(

Aµ(x(τ))ẋµ(τ)
)]

while diagram 1b depicts

the contour C1 ∪ C2 of the Wilson loop W2 = W (C1)W (C2). The relation between the external

gluon momenta and the x-coordinates is pi = xi−xi+1. The wiggly lines denote gluon propagators.

Diagram 1a gives a contribution to the one loop value of the Wilson loop with a self crossing.

where

s1
.
= 2xyp · q s2

.
= 2(1 − x)(1 − y)p · q

t1
.
= 2yq · p6 t2

.
= 2(1 − y)q · p2. (2.15)

Let us mention that s1, t1 and s2, t2 are the invariants of the loops C1 and C2 respectively

(see figure 1b). Using the relations in (2.14) one can deduce the values of the three cross

ratios in terms of six independent quantities t1, t2, s2, p2 · p6, x, y. These read:

u1 =
x2

13x
2
46

x2
14x

2
36

=
−t1t2

xys2(
t2

1−y
+ t1

y
+ 2p2 · p6)

u3 =
x2

35x
2
26

x2
36x

2
25

= u1 u2 =
x2

24x
2
15

x2
14x

2
25

= 1. (2.16)

Thus, we see that for the loop shown in figure 1 there is only one free cross ratio, since 2

of them are equal u1 = u3 and the third is equal to one, u2 = 1.

3 One loop result for a Wilson loop with a self-crossing and the BDS

conjecture

In this section, we calculate the one loop corrections to the vacuum expectation value of

the Wilson loop depicted in figure 1a. In N = 4 SYM the form of this operator is given

– 5 –
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by [27]:

W (C)
.
=

1

N
TrP exp

[

ig

∮

C

dτ
(

Aµ(x(τ))ẋµ(τ) + φi(x(τ))ẏi(τ)
)

]

, (3.1)

where P is the usual path-order symbol and xµ(τ) and yi(τ) parametrise the loop C. It is

possible, if one wishes, to include the fermions and use additional functions of τ needed to

parametrise the trajectory of a particle in superspace. In what follows, we focus on bosonic

loops by setting all these functions to zero. In addition we set ẏi = 0. As a result, the

Wilson loop is locally supersymmetric ẋ2 = ẏ2 only if ẋ2 = 0. For the configurations of

figure 1 this is true since the segments building the loop are null.

Effectively, what we are left with is the form of the Wilson operator in QCD. The

properties of these operators are well-studied [11–13]. It is known that the expectation

value of a smooth loop without any intersection is finite when expressed in terms of the

renormalised parameters [11, 12]. If the loop is not smooth, but has one or more cusps, then

it is no longer finite since additional ultraviolet (UV) divergences make their appearance.

However, it can be shown that the divergences can be renormalised multiplicatively (as

long as there are no cusps that lie on the light cone) [11, 12].

The situation is more intricate when the loop intersects itself. In this case, the loop

functions belonging to the set of loops which are the same as the original loop except at the

crossing points mix with each other under renormalisation promoting the renormalisation

constant Z to a matrix [13]. For example, the two configurations appearing in figure 1 mix

under renormalisation. Let us note, that intersecting Wilson loops are important since it is

precicely these configurations which give the quantum corrections to the Migdal-Makeenko

loop equations [14].

As soon as one considers self-intersecting loops which are built from null segments an

apparent puzzle arises. As we will show in the rest of this section, the Wilson loop of

figure 1 has an 1/ǫ singularity associated to the crossing.3 The direct connection between

the Wilson loop and the corresponding gluon amplitude, discussed in the Introduction,

implies that the amplitude should also have the same 1/ǫ pole. But the IR singularities of

the amplitudes are well-known. At large N they come from the exponentiation of the soft

and collinear singularities and due to planarity the involve only two particle invariants of

adjacent gluons [4]. Since, as we will shortly see, the Wilson loop UV singularity depends

on spq it seems that there is a disagreement between the two quantities. We will discuss

the resolution of this puzzle at the end of this section.

Next, we proceed to the one loop correction to the Wilson loop of figure 1a. As

discussed in [30] there are two types of non-vanishing diagrams. In the first one, a gluon

joins two adjacent segments meeting at a cusp. This kind of diagrams give the anticipated

1/ǫ2 pole when both ends of the gluon approach the cusp.

The second type consists of those diagrams where the gluon stretches between two

non-adjacent segments. Generically, this class of diagrams gives a finite contribution even

when evaluated in four dimensions. Our calculation is similar to the one of [30] except

3The results of this section are not in agreement with those of section 6.1 of [28].
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that now one has to be careful when the gluon is exchanged between the lines carrying

momentum p and q. In this case one can split the integral in four pieces accounting for the

four different ways in which the gluon can be exchanged.

To start, we parametrise the crossing lines as

x(τp) = x5 + τpp (3.2)

x(τq) = x2 + τqq, (3.3)

where 0 ≤ τp, τq ≤ 1. (3.2) implies that

x(τp) − x(τq) = x5 − x2 + τpp − τqq = P + q + τpp − τqq. (3.4)

One can now define the new variables b = −(1−y)+ τq and a = x− τp and use momentum

conservation (2.2) to rewrite (3.4) as

x(τp) − x(τq) = −bq − ap. (3.5)

It is now straightforward to evaluate the integral in D = 4− 2ǫ dimensions. An important

comment is in order. The propagator we are using is:

∆µν(x) = −
πǫ

4π2
Γ(1 − ǫ)

ηµν

(−x2 − i0)1−ǫ
. (3.6)

Notice that the prescription for avoiding the poles of the Feynman propagator is opposite

to that in configuration space and opposite to that of [16, 30]. This is because only then

the analytic properties of the divergent part of the amplitude as obtained from the 2 mass

easy box integral are the same as the analytic properties of the expression obtained from

a cusp in the Wilson loop calculation. Namely, both should behave as:

−
1

ǫ2

(−s − i0

µ2

)ǫ

. (3.7)

Somehow, the prescription in (3.6) is natural to impose, since the Wilson loop actually

lives in momentum space.

The finite part of the Wilson loop expectation value originating from a gluon exchange

between the crossing momenta p and q is:

Fǫ =
1

N

−(igµǫ)2Γ(1 − ǫ)

4π2−ǫ

∫ 1

0
dτp

∫ 1

0
dτq

p · q

(−(x(τp) − x(τq))2 − i0)1−ǫ

N2

2

=
N

2

−(igµǫ)2Γ(1 − ǫ)

4π2−ǫ

∫ x

−(1−x)
da

∫ y

−(1−y)
db

p · q

(−2ab p · q − i0)1−ǫ
. (3.8)

Notice that we have kept explicitly the prescription for the Feynman propagator. Then

the integral becomes:

Fǫ =
N

2

−(gµǫ)2Γ(1 − ǫ)

4π2−ǫ

1

2ǫ2

[

(−spqxy − i0)ǫ + (−spq(1 − x)(1 − y) − i0)ǫ

−(spqx(1 − y) − i0)ǫ − (spqy(1 − x) − i0)ǫ
]

(3.9)

– 7 –
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Without loss of generality one can assume that p · q > 0. The expansion in ǫ of the square

bracket in (3.9) gives

ǫ(−2πi) +
1

2
ǫ2
(

log2(−spqxy − i0) + log2(−spq(1 − x)(1 − y) − i0)

− log2(spqx(1 − y) − i0) − log2(spqy(1 − x) − i0)
)

+ O(ǫ3). (3.10)

In all the manipulations above we have put the branch cut of the logarithm on the negative

real axis. Using (3.10) our result becomes

Fǫ =
g2N

2

Γ(1 − ǫ)

4π2−ǫ

µ2ǫ

ǫ
(πi) −

g2N

8

1

4π2

(

log2(−spqxy − i0) + log2(−spq(1 − x)(1 − y) − i0)

− log2(spqx(1 − y) − i0) − log2(spqy(1 − x) − i0)
)

+ O(ǫ). (3.11)

We now turn to the puzzle mentioned earlier in this section. It is well-known that

the complete one loop amplitude is expressed as a sum of two-mass easy box functions,

all having coefficient equal to one [29, 41]. Although each box function contains poles in

ǫ whose coefficient depends on multi-particle invariants, it happens that after performing

the sum of all the two-mass easy box functions the infrared divergent terms involve only

two particle invariants of adjacent particles. However, our expression for the Wilson loop

contains a pole that depends on the invariant of two non-adjacent gluons, apparently not

present in the amplitude. The resolution of this puzzle is the following. The finite part

of the two mass easy box whose massless legs are p and q has a 1/ǫ pole identical to this

of (3.9). This can be seen by writing the all orders in ǫ expression for the finite part, which

can be found in [32]. This reads:

F 2me(s, t, P 2, Q2) = −
1

2ǫ2
IR

[(

cµ2
IR

1 − c(P 2 + i0)

)ǫIR

2F1

(

ǫIR, ǫIR, 1 + ǫIR,
1

1 − c(P 2 + i0)

)

+

(

cµ2
IR

1 − c(Q2 + i0)

)ǫIR

2F1

(

ǫIR, ǫIR, 1 + ǫIR,
1

1 − c(Q2 + i0)

)

−

(

cµ2
IR

1 − c(s + i0)

)ǫIR

2F1

(

ǫIR, ǫIR, 1 + ǫIR,
1

1 − c(s + i0)

)

−

(

cµ2
IR

1 − c(t + i0)

)ǫIR

2F1

(

ǫIR, ǫIR, 1 + ǫIR,
1

1 − c(t + i0)

)]

, (3.12)

where

c =
P 2 + Q2 − s − t

P 2Q2 − st
. (3.13)

By looking at (2.12), (2.13) it is immediate to see that c → −∞ as one approaches the

crossing configuration.4 By taking into account that ǫ = −ǫIR > 0 and µIR = µ−1 one can

multiply (3.12) by a = g2N
8π2 and take its limit as c → −∞ to obtain (3.9),5 since in this

4One can show that c ≤ 0.
5The µ appearing in the Wilson loop calculation can be redefined as µ2πeγE → µ2 (see [16]) to absorb

part of the Gamma function and a factor of πǫ which are present in (3.9). After this redefinition the two

expressions agree up to order O(ǫ0). Furthermore, µIR appearing in (3.12) is related to the dimensional

regularisation scale µamp used in the calculation of the amplitude by µ2
IR = 4πe−γµ2

amp.
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limit the hypergeometric functions become one. Furthermore, it is not difficult to verify

that all the other finite contributions originating from the gluon exchange between two

non-adjacent segments do remain finite.

It is instructive to consider the behaviour of the finite part by first setting ǫ to zero

and then approach the crossing configuration. In this case the finite part reads [30, 43]:

Fǫ=0 =
1

2

(

− Li2(1 − c(s + i0)) − Li2(1 − c(t + i0)) + Li2(1 − c(P 2 + i0))

+Li2(1 − c(Q2 + i0))
)

. (3.14)

In the limit c → −∞ one can use the identity

Li2(1 − x) + Li2(1 − x−1) +
1

2
log2(x) = 0 (3.15)

to obtain

Li2(1 − c(s + i0)) = −
1

2
log2(c(s + i0)) −

π2

6
. (3.16)

Employing (3.16) we can rewrite (3.14) as

Fǫ=0 =
1

4

(

log2(c(s + i0)) + log2(c(t + i0)) − log2(c(P 2 + i0)) − log2(c(Q2 + i0))
)

. (3.17)

Given that we have chosen the regime where P 2, Q2 > 0 while s, t < 0 we can

rewrite (3.17) as

Fǫ=0 =
1

4

(

(log(−c) + log(−s − i0))2 + (log(−c) + log(−t − i0))2

−(log(−c) + log(−P 2 − i0))2 − (log(−c) + log(−Q2 − i0))2
)

= log(−c)iπ +
1

4

(

log2(−s − i0) + log2(−t − i0)

− log2(−P 2 − i0) − log2(−Q2 − i0)
)

.

(3.18)

It is amusing to notice that (3.18) is what one has in (3.11)6 after the identification

log(−c) ↔ µ2ǫ/ǫ which implies −log(1 − u2) ↔ 1/ǫ.

In fact, it is natural to expect this relation since one is dealing with logarithmic sin-

gularities. One can view the situation where c → −∞ as another way to regularise the

crossing singularity. This can be seen by considering the simple case where the crossing

singularity is regularised by separating the two gluon momenta p and q by a space-like dis-

tance zµ → 0 satisfying p ·z = q ·z = 0 and z2 = −~z2. In this case, one can parametrise the

momenta by xµ
p = apµ, xµ

q = bqµ + zµ where a, b ∈ [−1/2, 1/2]. It is then straightforward

to evaluate P 2 = Q2 = p · q/2 − ~z2 and s = t = −p · q/2 − ~z2 from which one deduces

that c = − 1
~z2 . It is easy to calculate the gluon exchange integral of the aforementioned

6After multiplying (3.18) by a = g2N

8π2 . See also footnote 5.
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configuration whose zµ → 0 limit has the leading behaviour −πi log(~z2) = πi log(−c) in

agreement with (3.18).

It will be useful, in what follows, to notice that one can split −c in two pieces, one

depending on the conformal ratio u2 only and another which is not a function of the cross

ratios. Namely,

log(−c) =

(

log

(

P 2 + Q2 − s − t

st

)

− log(1 − u2)

)

. (3.19)

In the next section we derive the renormalisation group equations obeyed by null

cusped Wilson loops with a self-crossing and discuss their implications for the two loop

remainder function R(u1, u2, u3).

4 Renormalisation group equations and the finite remainder R

As was briefly mentioned in the previous section, the renormalisation properties of self

intersecting Wilson loops are governed by the cross anomalous dimension matrix which in

our case will be a gauge invariant 2×2 matrix depending only on the coupling constant and

crossing angle γ. In particular, the dependence of the renormalised expressions for the loops

of figure 1,7 W r
1 and W r

2 , on the renormalisation point µ is given by the renormalisation

group (RG) equations [13, 40]

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

W r
i = −Γij(γ, g)W r

j −
∑

k

Γcusp(γk, g)δijW
r
j , i, j = 1, 2, (4.1)

where

β(g) = lim
ǫ→0

∂g(gB , µ, ǫ)

∂µ
, (4.2)

gB is the bare coupling constant which is kept fixed as we differentiate the renormalised

coupling g with respect to µ and the sum over k is a sum over all the cusps of figure 1a.

(4.1) holds for generic loop configuration and implies that the Wilson loops are multi-

plicatively renormalised. However, one should be careful when the tangent of the lines at

the crossing point and/or at one or more of the cusps lie on the light-cone. This is precisely

the case for the loops of figure 1. As was pointed out in [15], for the Wilson loops that

contain both light-cone and cusp divergences there is no multiplicative renormalisability

and, as a result, (4.1) does not hold any more. Before going on, let us elaborate on the

form the RG equations take in such a case.

The cross anomalous dimension matrix for a generic crossing configuration in QCD

is known up to two loop order and is given in [40]. Although what interest us is the

expectation value of the Wilson loops at large N we remain general and keep, for the

moment, the number of the colours N finite. Since we eventually want to focus on the

7To be precise the RGE written below govern the evolution of self-intersecting loops where neither the

cusps nor the self-crossing have edges that lie on the light-cone. The RGE relevant for figure 1 will be

derived in the rest of this section.
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loops of figure 1, where p and q lie on the light-cone, it is sufficient to consider the large

γ behaviour of the crossing matrix. The general structure of this matrix at large γ is that

of equation 5.48 of [40]. Γ1 is a function which accepts a perturbative expansion in the

coupling constant Γ1 = Γ
(1)
1 a + Γ

(2)
1 a2 + . . .. The one-loop coefficient Γ

(1)
1 is determined by

the exchange of a single gluon and it is, thus, the same in both QCD and N = 4 SYM.

Its value, Γ
(1)
1 = 2, can be read directly from [40]. However, this is not the case for Γ

(2)
1

since the determination of its value requires the self-energy correction to the gluon which

is different in different theories.

However, one word of caution is in order. Firstly, equation 5.48 of [40] was obtained

by using the −x2 + i0 prescription for the Feynman propagator. We have seen in section

3 that in order to have agreement between the analytic properties of the expression for

the cusp and the corresponding expression for the IR divergences of the amplitude, one

has to adopt the opposite prescription, namely −x2 − i0. The effect of this change on

the cross anomalous dimension matrix is to substitute iπ with −iπ wherever it appears

in the matrix. A second observation concerns the normalisation of the loop functions. In

our conventions the loop W1 is normalised by multiplying it by 1/N see (3.1), while W2 is

normalised by multiplying it by 1/N2. On the other hand, these normalisations are absent

from the Wilson line definitions of [40]. As a result, the values for the entries of the crossing

matrix we have to use are modified with respect to those of [40] Γ
(Kor.)
11 , the modification

being Γours
11 = Γ

(Kor.)
11 ,Γours

12 = NΓ
(Kor.)
12 , Γours

21 = 1
N

Γ
(Kor.)
21 ,Γours

22 = Γ
(Kor.)
22 .

With these observations taken into account the cross anomalous dimension ma-

trix reads:

Γ =

(

iπ
N2 Γ1(g) −iπΓ1(g)

−γΓcusp(g)
N2 − iπ

N2 (2Γcusp(g) − Γ1(g)) γΓcusp(g) + iπ
N2 (2Γcusp(g) − Γ1(g))

)

. (4.3)

By keeping only the leading terms in γ in each of the entries of the crossing matrix it

is possible to rewrite (4.1) as
(

µ
∂

∂µ
+ β(g)

∂

∂g

)

W r
1 = −

iπ

N2
Γ1(g)(W r

1 − N2W r
2 ) −

∑

k

Γcusp(γk, g)W r
1

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

(W r
1 − N2W r

2 ) =

(

−
iπ

N2
Γ1(g) − γΓcusp(g)

−
∑

k

Γcusp(γk, g)

)

(W r
1 − N2W r

2 ). (4.4)

When p and q lie on the light-cone γ becomes infinite and (4.4) meaningless. In order to

find the equations the loop functions satisfy in this case, one can use a similar trick to

the one used in [15] for a loop containing a null cusp. One can take the second equation

of (4.4) and after dividing both sides by W r
1 −N2W r

2 differentiate it with respect to −2p ·q

to get8

∂

∂(−2p · q)

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

log(W r
1 − N2W r

2 ) = −Γcusp(g)
1

−2p · q − i0
. (4.5)

8In what follows, we also use the fact that the large γk behaviour of Γcusp(γk, g) is given by Γcusp(γk, g) =
γk

2
Γcusp(g), where γk = log

2pk·pk+1√
p2

k

q

p2
k+1

[37].
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Notice that the right hand side of (4.5) is well defined even when p2 = q2 = 0. Strictly

speaking (4.5) holds for 2p · q ≫ p2q2. We can now set p2 = q2 = 0 on both sides of (4.5)

and integrate back to get

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

log(W r
1 − N2W r

2 ) = −Γcusp(g) log(µ2(−2p · q − i0)) − Γ̄(g, γk), (4.6)

where Γ̄(g, γk) is an integration ”constant” that depends on the angles of the cusps but not

on spq. One can then, repeatedly, differentiate with respect to the invariants associated to

the cusps of figure 1b to obtain

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

log(W r
1 − N2W r

2 ) = −Γcusp(g) log(µ2(−2p · q − i0))

−
1

2

∑

k

Γcusp(g) log(−µ2sk,k+1 − i0) − Γ̄(g), (4.7)

where Γ̄(g) is an integration constant to be determined from plugging the explicit expres-

sions of the loop functions in (4.7).

One can apply the same trick on the first equation of (4.4). Namely we divide the first

equation of (4.4) by W r
1 and differentiate repeatedly with respect to spq and with respect to

the invariants sk′,k′+1 associated to the cusps of figure 1a. The resulting equation together

with (4.7) are the proper renormalisation group equations describing the evolution of the

loop functions involving a null self-crossing. Namely,

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

W r
1 = −

iπ

N2
Γ1(g)(W r

1 − N2W r
2 ) (4.8)

−
1

2

∑

k′

Γcusp(g) log(µ2(−sk′,k′+1 − i0))W r
1 − Γ̃(g)W r

1

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

(W r
1 − N2W r

2 ) =

(

− Γcusp(g) log(µ2(−2p · q − i0)) − Γ̄(g)

−
1

2
Γcusp

∑

k

log(−µ2sk,k+1−i0)

)

(W r
1 − N2W r

2 ).

The last set of equations are general and hold for any number of colours. What really

interests us is their behaviour as N → ∞. In such a limit (4.8) becomes

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

W r
1 = iπΓ1(g)W r

2 −

(

1

2

∑

k′

Γcusp(g) log(µ2(−sk′,k′+1 − i0)) + Γ̃(g)

)

W r
1

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

W r
2 =

(

− Γcusp(g) log(µ2(−2p · q − i0)) − Γ̄(g)

)

W r
2

−
1

2

∑

k

Γcusp(g) log(µ2(−sk,k+1 − i0)))W r
2 . (4.9)

Γ̃(g) and Γ̄(g) appear as constants of integration and they do not depend on any of the

kinematical invariants. This set of equations and in particular the first one will allow us
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to draw conclusions about the behaviour of the remainder function R near the crossing

configuration of figure 1a.

Before proceeding let us examine the second equation of (4.9). It is a well-known fact

that at large N the Wilson loop W2 factorises into the product of the expectation values

of the two separate loops C1 and C2, that is

W2 = 〈W (C1)W (C2)〉 = 〈W (C1)〉〈W (C2)〉. (4.10)

But the result for W (C1) and W (C2) are known to all orders in perturbation theory since

they are four-sided null loops and their form is completely determined by dual conformal

invariance. By using their expressions given in [17] it is not difficult to verify that W2

satisfies, indeed, the second renormalisation group equation of (4.9). It is important to

note the lack of a factor of 1/2 in front of the term containing log(µ2(−2p · q − i0)) in the

second equation of (4.9). This is the case because, as can be easily seen from figure 1b,

there are two cusps having an invariant proportional to spq = 2p · q.

The plan of the rest of this section is to substitute the expressions for the renormalised

Wilson loops W r
1 and W r

2 in the right hand side of the first equation of(4.9) and solve

for the dependence of R on the scale µ. To this end, let us recall the expressions for

W r(C1) and W r(C2). These are obtained by subtracting the poles from the dimensionally

regularised expressions for W (C1) and W (C2).

W r(C1) = 1 −
1

4

(

Γ(1)
cuspa(log2(−µ2t1 − i0) + log2(−µ2xyspq − i0))

)

+ F1 + O(α2)

W r(C2) = 1 −
1

4

(

Γ(1)
cuspa(log2(−µ2t2 − i0) + log2(−µ2(1 − x)(1 − y)spq − i0))

)

+F2 + O(α2), (4.11)

where t1 and t2 are defined in (2.15). F1 and F2 are the one-loop finite contributions to the

upper and lower half loops of figure 1b, respectively. Their expressions can be found in [4].

The expression for a generic six-edged loop, as obtained in dimensional regularisation

can be written as:

log W1 =
2
∑

l=1

(

alf
(l)
WL(ǫ)w(1)(lǫ) + C

(l)
WL

)

+ R (4.12)

In (4.12) w(1)(lǫ) denotes the one loop contribution to the Wilson loop evaluated at 4−2lǫ

dimensions while f
(l)
WL(ǫ) = f

(l)
0,WL + f

(l)
1,WLǫ + f

(l)
2,WLǫ2. The values for the constants f

(2)
0,WL,

f
(2)
1,WL and f

(2)
2,WL can be read from f

(2)
WL(ǫ) = −ζ2 − 7ζ3ǫ − 5ζ4ǫ

2 [33]. For completeness we

also give the value of C
(2)
WL = −ζ2

2 .

In what follows it will be useful to define Γ
(l)
cusp = 2f

(l)
0,WLand Γ(l) = 2f

(l)
1,WL/l and
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rewrite (4.12) as

log W1 = −
1

4

∑

l=1,2

al

(

Γ
(l)
cusp

(lǫ)2
+

Γ(l)

lǫ

)

∑

k′

(−µ2sk′,k′+1 − i0)lǫ + aF6(µ
2, ǫ, sk′,j′)

+a2f
(2)
0,WLF6(µ

2, 2ǫ, sk′,j′) + a2f
(2)
1,WLǫF6(µ

2, 2ǫ, sk′,j′) + R(µ2, ǫ, sk′,j′)

+C
(2)
WL − a2

f
(2)
2,WL

8

∑

k′

(−µ2sk′,k′+1)
2ǫ + O(ǫ) (4.13)

In the last equation F6 is the one loop finite part of the Wilson loop. The second term of

the second line of (4.13) is kept because it will give a finite contribution since, as discussed

in section 3, F6 has a pole in ǫ for the loop of figure 1a on which we will eventually focus.

We have also kept the constants of the last line of (4.13) although they will play no role

in the rest of the paper.

For a generic configuration F6 and R are finite quantities even in four dimensions.

However, in what follows, it is more convenient to think them as the functions that one

would obtain if one was able to analytically evaluate the two loop integrals in 4 − 2ǫ

dimensions. We want to keep ǫ 6= 0 because this is the most effective way of regularising

the crossing singularity. For a generic loop one has the alternative of setting ǫ = 0 and

evaluating the integrals in which case one obtains a finite µ-independent expression for R

which depends only on the cross ratios.

From (4.13) one can deduce the renormalised expression for W r
1 which reads:

log W r
1 = −

1

8

∑

k′

(Γ(1)
cuspa + Γ(2)

cuspa2) log2(−µ2sk′,k′+1 − i0) (4.14)

−
1

4

∑

k′

Γ(2)a2 log(−µ2sk′,k′+1 − i0) + aiπ log(µ2spq) + a2 Γ
(2)
cusp

2
iπ log(µ2spq)

+aF̃ + a2 Γ
(2)
cusp

2
F̃ + a2iπ

Γ(2)

2
+ Rr + C

(2)
WL − a2

3f
(2)
2,WL

4
+ O(α3)

Some comments are in order. In (4.14) the µ dependent terms involving the invariant spq

come from the renormalisation of the one loop finite part involving a single gluon exchange

between the momenta p and q (see (3.11)) while F̃ denotes the µ independent one-loop

finite part of the loop in figure 1a. As discussed previously, one should think of the two-loop

finite remainder R as a function of ǫ, µ and the kinematical variables which is finite and

µ independent at four dimensions for a generic amplitude, but may develop poles for the

case we are considering. Rr is the renormalised value of R after subtracting these ǫ poles,

in case they are present.

We are almost in position to use plug the expressions for the renormalised loop func-

tions in (4.9) in order to find the RGE that Rr satisfies. To this end, we divide the first

equation of (4.9) by W r
1 and by taking into account that the beta function of N = 4 is

zero, one can rewrite it as

µ
∂

∂µ
log W r

1 = iπΓ1(g)
W r

2

W r
1

−
1

2

∑

k′

Γcusp(g) log(µ2(−sk′,k′+1 − i0)) − Γ̃(g). (4.15)
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By using the relations (4.11) and (4.14) we can write the first term on the right hand side

of (4.15) as

iπΓ1(g)
W r

2

W r
1

= iπ
(

Γ
(1)
1 a+Γ

(2)
1 a2

)

(

1 −
1

8
Γ(1)

cuspa log2(−µ2spqxy − i0) (4.16)

−
1

8
Γ(1)

cuspa log2(−µ2spq(1 − x)(1 − y) − i0)

−
1

8
Γ(1)

cuspa

(

log2(−µ2t1) − log2

(

− µ2 t1
x

))

−
1

8
Γ(1)

cuspa

(

log2(−µ2t1) − log2

(

− µ2 t1
y

))

−
1

8
Γ(1)

cuspa

(

log2(−µ2t2) − log2

(

− µ2 t2
1 − x

))

−
1

8
Γ(1)

cuspa

(

log2(−µ2t2) − log2

(

− µ2 t2
1 − y

))

−aiπ log(µ2spq)+aF1+aF2 − aF̃

)

We should mention that in the right hand side of (4.16) one should keep terms up to

order a2, which means that one should use the order a expressions for W r
1 and W r

2 since

their ratio is multiplied by Γ1 which is already of order a.

We are now in position to plug (4.14) and (4.16) into (4.15) and derive the equation

that Rr satisfies:

µ
∂

∂µ
Rr =−

iπ

8
Γ(1)

cuspΓ
(1)
1 a2

(

log2(−µ2spqxy−i0)+log2(−µ2spq(1−x)(1−y)−i0)

+log2(−µ2t1)−log2

(

−µ2 t1
x

)

+log2(−µ2t1)−log2

(

−µ2 t1
y

)

+log2(−µ2t2)

−log2

(

−µ2 t2
1−x

)

+log2(−µ2t2)−log2

(

−µ2 t2
1−y

))

+π2a2Γ
(1)
1 log(µ2spq)

+iπΓ
(1)
1 a2(F1+F2−F̃ )+iπΓ

(2)
1 a2−Γ̃(g)+

1

2

∑

k′

Γ(2)a2−iπa2Γ(2)
cusp (4.17)

The two last terms in (4.17) originate from the differentiation of the first and third term in

the second line of (4.14) respectively. Using the values for Γ
(1)
1 = Γ

(1)
cusp = 2 and Γ

(2)
cusp =−2ζ2

this equation can be easily integrated to give:

Rr =−
iπ

12
a2

(

log3(−µ2spqxy)+log3(−µ2spq(1−x)(1−y))+2 log3(−µ2t1)−log3

(

−µ2 t1
x

)

−log3

(

−µ2 t1
y

)

+2 log3(−µ2t2)−log3

(

−µ2 t2
1−x

)

−log3

(

−µ2 t2
1−y

))

+
1

2
π2a2 log2(µ2spq)+

1

2

(

iπ2a2(F1+F2−F̃ )+iπΓ
(2)
1 a2+

1

2

∑

k′

Γ(2)a2−Γ̃(g)+iπa22ζ2

)

· log(−µ2spq−i0) (4.18)
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which implies after some algebra

R = −
iπa2

8ǫ3
(−µ2spq)

2ǫ −
iπa2

4ǫ2
(−µ2spq)

2ǫ log(xy(1 − x)(1 − y))+
π2a2

4ǫ2
(µ2spq)

2ǫ

−
iπa2

8ǫ
(−µ2spq)

2ǫY +
a2

2ǫ
(−µ2spq)

2ǫT +C ′, (4.19)

where

Y =

(

log2(xy)+log2((1 − x)(1 − y)) + 2 log2 t1
spq

− log2 t1
spqx

− log2 t1
spqy

+2 log2 t2
spq

− log2 t2
spq(1 − x)

− log2 t2
spq(1 − y)

)

T = iπ(F1 + F2 − F̃ ) +
iπ

2
Γ

(2)
1 −

1

4

∑

k′

Γ(2) −
1

2
Γ̃(2) + iπζ2. (4.20)

One can check that the finite part obtained from (4.19) after throwing away its poles is

equal to the result of (4.18) up to µ independent terms, which the RGE do not control,

anyway. Of course, one has to do a bit of algebra to bring the logs of (4.18) in the form

log(−µ2spq).

From (4.19) it is evident that the unrenormalised expression for R contains poles in

1/ǫk(−µ2spq)
2ǫ, where k ≤ 3. These poles originate from Feynman diagrams which have

two gluons, at least, attached to the intersecting legs p and q. Notice, however, that not all

diagrams with two gluons attached to the intersecting legs give such poles. For instance,

the non-abelian part of the diagram where two gluons are exchanged, one between q and

p2 and the other between q and p3 contains no such pole. From (4.19) we can read the

leading singularity of R to be − iπa2

8ǫ3
. At first sight, this 1/ǫ3 pole seems peculiar since as

discussed in [17] all the terms with poles of order higher than two cancel in the final result

for the Wilson loop. However, this should not be the case for an intersecting loop. Its

leading 1/ǫ3 singularity comes from diagrams where all the gluons are exchanged between

the momenta that cross. The subleading poles can also originate from diagrams where one

or more gluons are not attached to the crossing gluons.

As discussed at the end of section 3, one can regularise the crossing configuration either

by dimensional regularisation or by allowing a small distance between the intersecting

gluons. What is 1/ǫ in the former approach becomes − log(1 − u2) in the latter. This

implies that the leading behaviour of the finite part R in the case where the two lines

almost cross is

R ∼ iπ log3(1 − u2). (4.21)

Although what concern us here is the leading singularity (4.18) points that R will also have

subleading terms which behave like log2(1 − u2) and log(1 − u2). Thus, we conclude that

the finite remainder function develops a divergent imaginary part as one approaches the

crossing configuration.9

9For the case of almost intersecting lines, we have verified that the non-abelian part of the diagram

where 2 gluons are exchanged between p and q is indeed proportional to −iπ log3(−c) when approaching

the crossing configuration.
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5 Discussion

In this section, we discuss some of the implications of the results obtained in the two

previous sections.

The one-loop n-gluon MHV scattering amplitude in N = 4 SYM was firstly evaluated

in [41] using unitarity methods, as well as information coming from taking appropriate

collinear limits. To simplify the calculation of the integrals, the authors of [41] restricted

the calculation in the kinematical region where all the Lorentz invariants are negative

(Euclidean region). Their result was that the helicity-blind part of the amplitude is a

sum over all different two-mass easy box functions F 2me, all having coefficient equal to

one. Namely,

M
(1)
1 =

∑

p,q

F 2me(p, q, P,Q), (5.1)

where F 2me is given by

F 2me(p, q, P,Q) = −
1

2ǫ2

((

−s

µ2
IR

)−ǫIR

+

(

−t

µ2
IR

)−ǫIR

−

(

−P 2

µ2
IR

)−ǫIR

−

(

−Q2

µ2
IR

)−ǫIR
)

+
1

2

(

1

2
log2

(

s

t

)

+ Li2

(

1 −
P 2

s

)

+ Li2

(

1 −
P 2

t

)

+Li2

(

1 −
Q2

s

)

+ Li2

(

1 −
Q2

t

)

− Li2

(

1 −
P 2Q2

st

))

(5.2)

and c is given by (3.13). If ones wishes to write down the amplitude in the physical

region, one should analytically continue the expression (5.2). Usually, this analytic contin-

uation to positive values of the kinematic variables is achieved by applying the replacement

(kinematic invariant) → (kinematic invariant) + i0+. As was noticed in [42] this naive

continuation works fine for most of the terms in (5.2). However, the last dilogarithm

of (5.2) needs special care. One has to be careful to not cross its cut which extends from

one to infinity on the real axis. The correct analytic continuation for this term is achieved

by making the replacement

Li2

(

1 −
P 2Q2

st

)

→ Li2

(

1 −
P 2 + i0

s + i0

Q2 + i0

t + i0

)

+ (5.3)

+

(

log

(

P 2 + i0

s + i0

Q2 + i0

t + i0

)

− log

(

P 2 + i0

s + i0

)

− log

(

Q2 + i0

t + i0

))

log

(

1 −
P 2 + i0

s + i0

Q2 + i0

t + i0

)

.

When supplemented with the second line of (5.3), (5.2) provides an expression for the two-

mass easy box function which is valid for all kinematical regimes. A second representation

of the two-mass easy box, which is also valid for all kinematical regimes, was obtained

in [32, 43]. The expression for its finite part is given in (3.14). The equivalence of the latter

with (5.2), properly analytically continued, was shown numerically in [43]. It is elementary
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to check that it is precisely the non-trivial analytic continuation term appearing in (5.3)

which gives the −πi log(1 − u2) of (3.18) (see(3.19)).

The contribution to the amplitude from the first term of (3.19), which is not a function

of the invariant cross ratios ui, i = 1, 2, 3 has to cancel against an opposite contribution

coming from the single gluon exchanges between non-adjacent legs. The reason for this

is that the amplitude obeys the anomalous conformal Ward identity [18] -we remind the

reader that we are now considering a case where u2 is almost but not exactly one-

KνF (WL)
n ≡

n
∑

i

(2xν
i xi · ∂i − x2

i ∂
ν
i )F (WL)

n =
1

2
Γcusp

n
∑

i

xν
i,i+1 log

(

x2
i,i+2

x2
i−1,i+1

)

(5.4)

in any kinematical region. Furthermore, in [17] it was checked that the one-loop n-gluon

amplitude satisfies (5.4) when all the invariants lie in the Euclidean region. This implies

that any terms coming from the non-trivial continuation discussed above should depend

only on the conformal cross ratios. Since all such terms come from the last dilog of (5.2)

they should be proportional to log(1 − u2), see (5.3). This means that the non-conformal

part of (3.18) (see also(3.19)) should cancel in the whole amplitude. We have checked,

that this is, indeed, the case. Furthermore notice that, if one was computing numerically

the one loop amplitude and had restricted himself to the Euclidean region, he would have

obtained real values for all the integrals. In other words, he would have completely missed

the second and third lines of (5.3) and the fact that F 2me has a branch cut related to the

last dilog of (5.2).

We now proceed to some comments regarding the behaviour of the two-loop remainder

function R. In a nice paper [33], this function was numerically evaluated for a wide range

of the kinematic variables. One of the kinematic points the authors of [33] considered was

the point with conformal ratios u1 = u2 = u3 = 1 for which the remainder function was

found to be R = −2.70 . . .. This result is, apparently, in contradiction with (4.19) (see

also (4.21)) and the discussion below it which predicts an infinite imaginary part for R.

However, one should not forget that the calculation of [33] was performed in the Euclidean

region, whereas our result holds in the physical region. This suggests that, as in the one-

loop case, the behaviour of the finite remainder R dictated by (4.19) is due to a non-trivial

analytical continuation analogous to the one needed for the one-loop finite part and as such

it could never be seen in the numerical calculations of [20, 33].

Since no analytic expression for the finite remainder function R is known, let us see if we

can get any information about it. The discussion at the end of section 4 shows that near the

crossing configuration , that is as u2 → 1 and u1 ≈ u3, the remainder function R behaves

like R ∼ iπc1 log3(1 − u2) + . . ., where c1 is a rational constant. The simplest function

reproducing the aforementioned leading behaviour of R when analytically continued, in a

similar fashion to (5.3), is Li4(1 − u2). In order to avoid crossing the polylog’s cut, one

has to add additional terms proportional to the discontinuity of the function along the cut.

Taking into account that limǫ→0+
(Lin(x+ iǫ)−Lin(x− iǫ)) = 2πi logn−1(x)

Γ(n) it is evident that

the limiting behaviour of R is consistent with the analytic continuation of Li4(1 − u2). In

any case, we should stress that the choice above is by no means unique, since the relation

R ∼ iπ log3(1 − u2) holds only as we asymptotically approach the crossing. However, this
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behaviour indicates that near the crossing R includes a function of 1 − u2 which has a

branch cut for negative values of u2. Thus, it is conceivable that R has a cut along the

negative u2 axis when u1 ≈ u3.

It is clearly desirable to obtain an analytic expression for the remainder function. The

positions where its cuts are situated as well as the discontinuities along these cuts can play

a crucial role to its determination. Thus, it is evident that the analytic properties of R

are very important. An interesting discussion of the analytic structure of the Wilson loop

diagrams was presented in [9].

We close this note by making some remarks. The first concerns the transcendentality

of R. All the terms in (4.19) have the same transcendentality 4, in agreement with the

transcendentality principle, provided that Γ
(2)
1 and Γ̃(2) have transcendentality 2 and 3,

respectively. The second concerns the fact that it is not possible to construct crossing

configurations for the scattering of 4 and 5 gluons. This is in agreement with the fact

that a non-trivial remainder function R starts appearing from 6 gluons on. We should also

mention that the analysis of section 4 can be straightforwardly extended to intersecting

Wilson loops corresponding to amplitudes with any number of gluons.

A last important comment is the following. It is well-known that the even part of the

one loop amplitude can be split in two pieces. The first one contains the scalar box integrals

and is given by (5.1). However, there is a second piece originating from a hexagon integral

which will contribute terms of order O(ǫ) to the one loop amplitude. One may wonder if

the latter terms contribute to the coefficient of (4.21) in the limit c → −∞. In [10], it was

argued that for general kinematics the contribution of the hexagon integral in 1/2(M (1))2

precisely cancels against the hexabox integral depicted in 15 of figure 3. As a result the

hexagon part does not give any contribution to the remainder function R. Although it is

probable that the same will happen at the c → −∞ limit it is not completely clear to us if

this is really the case. However, we should mention that, from the Wilson loop perspective

this contribution, if present, is already taken into account in the solution of the RGE (4.19),

if one believes the Wilson loop/amplitude equivalence.
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